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In order to understand the dynamics of emergence and spreading of socio-technical innovations and
population moves it is important to determine the place of origin of these populations. Here we focus
on the role of geographical factors, such as land fertility and mountains in the context of human popu-
lation evolution and distribution dynamics. We use a constrained diffusion-based computational model,
computer simulations and the analysis of geographical and land-quality data. Our analysis shows that
successful human populations, i.e. those which become dominant in their socio – geographical environ-
ment, originate from lands of many valleys with relatively low land fertility, which are close to areas of
high land fertility. Many of the homelands predicted by our analysis match the assumed homelands of
known successful populations (e.g. Bantus, Turkic, Maya). We also predict other likely homelands as well,
where further archaeological, linguistic or genetic exploration may confirm the place of origin for popu-
lations with no currently identified urheimat. Our work is significant because it advances the understand-
ing of human population dynamics by guiding the identification of the origin locations of successful
populations.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction and background

Identifying the place of origin or homeland, the urheimat, of
current and historical populations is a fascinating research chal-
lenge (De Barros Damgaard et al., 2018; Diamond and Bellwood,
2003; Driem, 1993; Gray et al., 2009; Mathieson et al., 2018;
Piazza et al., 1995). Populations may be defined by their language
and/or material and customary culture. Recently many studies
have used genomic analysis of ancient humans to identify the most
likely human population migration paths that led to the population
of various parts of the world (Lazaridis et al., 2014; Nielsen et al.,
2017; Slatkin and Racimo, 2016). Computational simulations have
proved powerful in the evaluation of hypotheses about historical
human population migrations (Fedotov et al., 2008; Isern et al.,
2017; Montenegro et al., 2016).

Modern human populations evolved during the last
200,000 years (Campbell and Tishkoff, 2010; Cavalli-Sforza, 1997;
Nielsen et al., 2017; Slatkin and Racimo, 2016) through many cul-
tural changes that led to the emergence of successful populations
that grew, spread, and became dominant over larger territories
for a period of time (Bouckaert et al., 2012; Cavalli-Sforza, 1997;
Chiaroni et al., 2008; Diamond and Bellwood, 2003; Mellars,
2006; Piazza et al., 1995). Archaeological and genetic evidence
indicates that African human populations grew rapidly around
80,000 years ago, followed by spreading to Asia and Europe
between 60,000 and 40,000 years ago (Mellars, 2006; Owens and
King, 1999; Slatkin and Racimo, 2016). Linguistic and genetic evi-
dence indicates that Indo-Europeans are likely to have originated
from the plains between the Dniester and the Volga rivers
(Diamond and Bellwood, 2003; Mathieson et al., 2018), with dee-
per roots in the Caucasus and Northern Iran (Mathieson et al.,
2018), around 6500 B.C.E. and spread from here to become domi-
nant in Europe and South Asia. In Africa the Bantu spread out from
the border areas of Nigeria and Cameroon around 5000 years ago
and became dominant in most of Sub-Saharan Africa (Campbell
and Tishkoff, 2010). There are several populations that can trace
their origins to north-eastern Central Asia (e.g. Mongols, Turks)
(De Barros Damgaard et al., 2018), to the Ural-Volga area (e.g.
Finns, Hungarians) (Piazza et al., 1995), the Fertile Crescent (e.g.
Jews, Arabs) (Kitchen et al., 2009), to the mountains of Yunnan
(e.g. Tibetans) (Driem, 1993), or to Taiwan (e.g. Malays, Polyne-
sians) (Gray et al., 2009). Genetic and linguistic markers may not
point to the same origins for a given population (Cavalli-Sforza,
1997), but both indicate earlier successful populations (note that
the genetic or linguistic markers themselves do not determine
the success of the population, which depends on socio-technical/
cultural features of the populations, the markers only help tracing
the origins of the populations).
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Successful populations make better use of available environ-
mental and human resources than other populations. Such popula-
tions are likely to gain resources at the expense of other
populations that are less resource-efficient. Consequently, success-
ful populations expand and spread. Less successful populations
may get displaced and may become extinct. The better use of
resources may include milk consumption, agricultural or military
innovations, or more resilient social organization. Here we assume
that the emergence of new successful populations is due to cultural
(socio-technical) innovations that allow a population to become
better than its neighbors in efficient utilization of environmental
and human resources.
2. Mathematical and computational modelling

Geographical constraints are important for the evolution of
human populations (Coop et al., 2009). The fragmentation of the
environment, due to mountains, rivers, sea shore, and variable
availability of food resources, has been recognised as an important
factor for the evolution and speciation of animal populations
(Debinski and Holt, 2000; Ryberg et al., 2013). It is reasonable to
assume that such factors are important for the emergence of suc-
cessful human populations. Our hypothesis is that the geographical
features that matter most are the distances from mountain ridges
and high-fertility lands, and the fertility of the land where the pop-
ulation resides. This hypothesis is based on the following intuitive
reasoning. Being near to mountains creates natural defence lines
for the population, making it harder for other populations to
invade and displace the current population (Jeong et al., 2016).
Being near to high-fertility land provides the opportunity to spread
into resource-rich areas, which can support population growth. In
general, it is assumed that a population that can utilise their
resources more efficiently (e.g. better agricultural practices that
give higher yield of produce; more effective fighting practices
and tools, which increase the likelihood of winning in armed con-
flicts), will dominate and potentially displace another population
that is less efficient in the use of their resources. Residing in fertile
lands offers resources to grow the population but reduces the
growth potential difference between populations with similar
resource utilization efficiency. Residing in harsh lands offers less
resource for growth, but supports the relatively quicker growth
of a population that is more efficient in resource utilization than
others, contributing to the emergence of locally dominant popula-
tions. This paper aims to test the stated hypothesis using computa-
tional modelling and the analysis of real world geographical data.

Usually the modeling of the spreading of populations (humans,
animals) relies on reaction-diffusion equations that define the
spreading (diffusion) of the population, taking into consideration
constraints on the spreading, and also the effects of the environ-
ment (reaction part) in terms of population loss and gain (e.g. mor-
tality, reproduction) (Fedotov et al., 2008; Flather and Bevers,
2002; García-Ramos and Rodríguez, 2002; Volpert and Petrovskii,
2009). The general equation for such models is

@pðx; tÞ
@t

¼ rðDðp; xÞ � rpðx; tÞÞ þ Fðp; x; tÞ ð1Þ

where pðx; tÞis the population size at time tat spatial position x, the
first component on the right side represents the diffusion effect and
the second the population change that depends on the population
size, location and time, which is the reaction term of the equation.
Dðp; xÞ represents the diffusivity of the environment and includes
the spatial constraints. The equation may include a stochastic com-
ponent in either part to represent random variation of parameters.
In general, the explicit description of population spreading in space
and time cannot be calculated. An approximate solution may be
2

found by simulating a discretized reaction-diffusion process
(Flather and Bevers, 2002).

To study the impact of geographical constraints on emergence
of successful populations we formulated a stochastic reaction-
diffusion model of population spreading with multiple populations
in the presence of such constraints (Andras, 2015) and imple-
mented it through a computer simulation (Isern et al., 2017;
Montenegro et al., 2016). Geographical constraints are included
as simulated mountain ridges in the diffusivity specification, and
the variability of the simulated land fertility is included in the reac-
tion part of the equation. We built a discretized simulation of the
model using a two dimensional grid of squares for spatial positions
(Andras, 2015). The size of thej-th population at time t and location
x is denoted aspjðx; tÞ. The characteristic resource utilization ability
of this population ispj, represented as a bit string. Each grid loca-
tion may be occupied by multiple populations. The update equa-
tion for the population size at a given location is:

pjðx; t þ 1Þ � pjðx; tÞ ¼
X
s2T

ðrt;jxþs;�s � pjðxþ s; tÞ � rt;jx;s � pjðx; tÞÞ

þ ðf x;tðpjÞ � 1Þ � pjðx; tÞ ð2Þ

where T ¼ fð�1;0Þ; ð1;0Þ; ð0;�1Þ; ð0;1Þg, f x;tare the effective
resource utilization efficiency functions for a given location and
time, considering land fertility and the simultaneous presence of

other populations, andrt;jx;sare stochastic diffusivity parameters. Here
the effective resource utilization efficiency includes the effect of
competition between populations. Having multiple populations at
the same location means that they need to share the locally avail-
able resources, while they have different efficiency of using their
share of resources. The f x;t determines the local reaction term of
the diffusion – reaction system, and it shows how the local popula-
tion grows by itself (i.e. ignoring the diffusion aspect given by pop-
ulation movements). Populations that are more efficient in their
resource utilisation will have a higher growth rate and difference
between the growth rates of different populations will also be influ-
enced by the availability of resources at the location of the popula-
tions. We note that the choice of T ¼ fð�1;0Þ; ð1; 0Þ; ð0;�1Þ; ð0;1Þg
for the diffusion neighbourhood is for convenience and simplicity
(this is similar to the von-Neumann neighbourhood in the context
of cellular automata). In effect this means that there is no direct
population diffusion in diagonal direction, but this does not change
the generality of the simulations, since diagonal direction diffusion
will still happen, just not in one step, but in two steps.

The stochastic diffusivity parameters are given as

rt;jx;s ¼
0 if pjðx; tÞ < bx;s

ntx;s if pjðx; tÞ P bx;s

(
ð3Þ

where ntx;s ¼ ntx;s;dtm þ ntx;s;rnd is the sum of a deterministic and a ran-
dom component generated from a uniform distribution over ½0;x�,
x < 1, s 2 T. The bx;sare the model parameters representing diffu-
sivity barriers between locations x and xþ s, bx;s ¼ bxþs;�s, i.e. these
implement simulated mountains, high bx;smeans a higher barrier
value, which requires a larger population size to make crossing (dif-
fusing through) likely, if the population size is not large enough to

cross the barrier then rt;jx;s ¼ 0. The deterministic component of the
diffusivity parameter, ntx;s;dtm, represents the impact of past popula-
tion movements and the attraction of current populated areas, i.e. if
the population migrated in a certain direction before, it is likely to
follow the migration in the same direction and will not reverse
quickly its migration direction, if there are areas with high popula-
tion, indicating the good availability of resources, this will attract
the migration of populations in the direction of such areas. In other
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words, part of the j-th population moves from location x to xþ sif
the population size is sufficient, i.e. pjðx; tÞ P bx;s.

Bit changes in pjare cultural innovations, which imply the
emergence of a new population with modified resource utilization
ability. The new population starts at the location of the ancestor
population and a part of this population converts to the new pop-
ulation. Populations may die out at any location. A population is
successful if at any time across all locations it represents at least
0.5% of the total population of the simulated world. Further details
about the model and simulation are provided in the materials and
methods section in the supplementary information.

We considered the following features of successful populations:
resource utilization efficiency, the resource utilization innovation,
i.e. the difference between ppopulationand pancestor , and the time per-
sistence, i.e. the number of time turns between the emergence
and disappearance of the population. The impact of natural con-
straints was measured as the distance of the population’s origin
location to mountain ridges and the origin location’s land fertility.
3. Implementation and simulation of the computational model

The computational model and simulation is based on a similar
model and simulation described earlier (Andras, 2015). The simu-
lation results reported here were generated with a modified ver-
sion of this earlier model. The changes that we made implement
more closely than the previous version the specific aspects of
human migration, such as spreading of information about socio-
economic centres and cognitive decision making about the direc-
tion of migratory movement. These factors imply that socio-
economic centres exert attraction on migratory pathways and
migratory movement directions are persistent for some period of
time (i.e. there are no random reversals of the movement for a
while). Technical details of the computational model and of the
simulations are reported below.

The simulations were implemented in Delphi XE3 (Embar-
cadero Technologies). The locations of simulated mountain ridges
and fertile land areas were set randomly. The work reported here
is based on simulations of lands defined as 100 � 60 square grids,
with 20 mountain ridges and 10 locations of low fertility land areas
with gradual change of land fertility. The data analysis is based on
60 distinct simulations. The size of the simulated land grid is set to
be sufficiently large, while at the same time to allow sufficiently
fast execution of the simulations. The numbers of mountain ridges
and low land fertility land locations are set to again to be suffi-
ciently large to generate a sufficiently complexly structured simu-
lation environment. These numbers have been varied to assess
their impact on the simulations and this sensitivity analysis is
reported in Section 6.

Simulated mountain ridges are defined as continuous lines
between two randomly selected grid locations in the 100 � 60 grid
location world. The height of the ridge is set randomly to be hby
sampling a uniform distribution over the allowed value range.
The range of the possible random values for h is set by the average
difficulty of crossing mountain ridgesf– the actual range in the
simulations is½0;100 � f�and f ¼ 10, this value of f is set to generate
a sufficiently difficult environment, other values have been consid-
ered in the context of the sensitivity analysis discussed in Section 6.
A mountain ridge M is implemented by setting the diffusivity val-
ues for the grid locations belonging to M, i.e. bx;s ¼ h for
8x 2 M; s 2 T and bxþs;�s ¼ h. If mountain ridges cross each other
the diffusivity values at the crossing grid locations are set to the
highesth value associated with the crossing mountain ridges. We
note that our setting of mountain ridges is the simplest way of
3

setting them randomly, it is not aimed to reproduce any closer
approximation of the natural arrangement of mountain ridges.
The simplest random setting of mountain ridges is considered suf-
ficient for the purpose of the simulations presented here.

Simulated low fertility land areas are defined by picking ran-
domly the centre grid location of the area, which has to be neigh-
bouring or within a mountain ridge. At the centre the land fertility
is set to be the lowest, and gradually the land fertility increases
with the distance from the centre. If x is the centre grid location
of a low fertility area, then the s size parameter of the area is set
randomly, and the extent of low fertility is calculated for all grid
locations L ¼ fxþ qjð�s;�sÞ 6 q 6 ðs; sÞg as kðxþ qÞ ¼ 1=jjqjj. If
low fertility land areas overlap the calculated extents of reduction
in land fertility are added together resulting in a lower land fertil-
ity than in each of non-overlapping parts of these areas. The land
fertility of a location� is 1=kðxÞ, if kðxÞ P 0:1 and it is 10 otherwise.

If the size of a certain population gets to zero or becomes neg-
ative at a spatial location, this population is considered extinct at
this location and it gets removed from the respective location.

Each population has a set of cultural features, its socio-technical
repertoire, that determine its characteristic resource utilisation
ability p. The set of features is represented as a binary vector with
100 bits, g1; . . . ; g100, where if the value of the bit gi is 1, it means
that i-th cultural feature is present in the socio-technical repertoire
of the population, while if gi ¼ 0 then this feature is not part of the
socio-technical repertoire of the population. Then p, the resource
utilisation ability of the population, is defined

asp ¼ P10
i¼1

P10
k¼1gkþði�1Þ�10 � 2k. Here our aim is to model in a simple

way the combination of cultural features that determine resource
utilisation practices. For example, these features may relate to ani-
mal husbandry (e.g. the use of animal milk as a frequent food
source), hunting techniques (e.g. the use of a certain kind of arrow
and bow), religious practices (e.g. using or avoiding human sacri-
fice), and so on. Naturally some cultural features are more impact-
ful than others in terms of resource utilisation efficiency and some
cultural features may be different, but equally impactful. Our
model assumption here is that there are a set of groups of features
such that any two feature in the same group have a different
impact and that for each impact level there is one corresponding
feature in each group of cultural features. To have a sufficient num-
ber of groups of features and a sufficient number of features in
each group, we chose 10 both as the number of groups and number
of features. This is an arbitrary choice, however, it provides a suf-
ficiently large overall number of cultural features and groups of
such features. The simplest way to achieve the difference of impact
between features within the same group is that each cultural fea-
ture has an associated impact that is a power of a common base
number, and the simplest choice for the base number is 2. This
choice means that each cultural feature will exist fully or not at
all in the resource utilisation repertoire of a population. Alterna-
tively, we could have chosen a larger base, to allow several levels
of development of each cultural feature (e.g. using animal milk
as a drink; using animal milk to make a small range of milk prod-
ucts such as butter and soft cheese; using animal milk to make a
wide range of milk products some of which can be stored for longer
such as hard cheeses and fermented milk), however in this case the
values of gi would need to indicate the level of the cultural feature
and would no longer be binary values (e.g. choosing the base 4
would allow three levels of expertise in the respective cultural fea-
ture, 1, 2, 3 the 0 indicating the lack of the cultural feature).

At the end of each time turn of the simulation each population
at each grid location has the chance g ¼ 0:00004 to undergo a cul-
tural innovation through a flip of one of the bits of the correspond-
ing genome. If a such change happens the population splits as
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described in the paper and a new population with a new socio-
technical repertoire originates at the grid location where the cul-
tural change happened. The amount of resource utilisation innova-
tion due to the cultural change is i ¼ pnew � pancestor . Due to the way
we defined p the values of resource utilisation ability innovations
in the simulations are always a power of 2. Note that the change, or
cultural innovation, may happen in both direction, i.e. by adding a
cultural feature to the socio-technical repertoire or by dropping a
cultural feature from the pre-existing repertoire. The value of g is
set to be sufficiently small, such that cultural innovations do not
happen too often.

The functions f x;t that determine the effective resource utilisa-
tion efficiency of the populations in a given location and at a given
time are defined as follows. Let us assume that there are n popula-
tions at the grid location xat time t. First we calculate for the j-th

population hjx;t ¼ 1=ð1þ eb� 0:5�pj=
Pn

i¼1
pi

� �� �
Þ, where b is the model

parameter that determines the steepness of competition between
the co-located populations – we set b ¼ 12, other values are
explored in the context of sensitivity analysis discussed in Sec-
tion 6. Then we calculate f x;tðpjÞ ¼ hjx;t=kðxÞ � l, if kðxÞ P 0:1 and

f x;tðpjÞ ¼ 10 � hjx;t � l, if kðxÞ < 0:1, where kðxÞ is the extent of low
fertility land at the grid location x(i.e. higher value of kðxÞ implies
lower land fertility), and l is the mortality rate that is assumed
to be the same for all populations, in the simulation we
usedl ¼ 0:02. The mortality rate is set to be sufficiently small
and also sufficiently large to allow both growth and shrinking of
populations in the context of the simulations and depending on
the local competition between the co-located populations.

To calculate the random and deterministic components of the
non-zero diffusivity parameters, i.e., ntx;s ¼ ntx;s;dtm þ ntx;s;rnd, we pro-
ceed as follows. Let Jx;tbe the set of indices of all populations pre-
sent at the location x at time t and let Pðx; tÞ ¼ P

i2Jx;t piðx; tÞ be

the total population at this location and time. For each direction
s 2 T ¼ fð�1;0Þ; ð1;0Þ; ð0;�1Þ; ð0;1Þg we calculate the attractive-
ness of the directionaðsÞ by looking at the total population in each
grid location within the corresponding quadrant of the worldQx;s

(see Fig. 3) within a set radius (equal to 5 in the implementation).
In effect we find out which of the four possible directions has
higher population locations, which attract the movement of the
population from its current location. Let Pmax

x;t;s ¼ max
x02Qx;s

Pðx0; tÞ the

maximum value of the total populations in these quadrants. Let

Pmax
x;t;s

�
¼ Pmax

x;t;s=ð
P

s02TP
max
x;t;s0 þ Pðx; tÞÞ, then we calculate

aðx; t; sÞ ¼ 1=ð1þ e�k1 �ðPmax
x;s

�
�k2ÞÞ, which is the attractiveness of the

direction s, and k1; k2 are the steepness and inflection point param-
eters – the values for these were set to 100 and 0.3, respectively, in
the simulations in order to allow the clear differentiation between
attractive and non-attractive locations. This means that given the
sigmoidal expression of aðx; t; sÞ the likely diffusion of the popula-
tion is larger in the direction where there is a high population loca-
tion in that direction within the neighbourhood of the current
location, compared to another direction where the location with
the largest total population has a smaller total population. How-
ever, aðx; t; sÞ is set to 0 if the current population migrated to its
current location from this direction recently – the recent migration
is defined in this simulation as migration that happened in the last
5 time turns. This alteration of aðx; t; sÞ implements the implicit
maintenance of the direction of migration, by preventing the
migration back to the recent earlier location. The deterministic
component of the diffusivity parameter is then calculated as
ntx;s;dtm ¼ z � vx;t;s � aðx; t; sÞ and the random component is calculated

as ntx;s;rnd ¼ ð1� zÞ � vx;t;s � 1 where 1 is a random number from ½0;1�
with uniform distribution, vx;t;sis set to 0.4 as default value and is
4

altered to 0.6 ifPmax
x;t;s > 1:5 � Pðx; tÞ and to 0.016 if Pmax

x;t;s < Pðx; tÞ,
reflecting that more populated areas are more attractive as migra-
tion destination than less populated areas, and z is the parameter
that balances the contribution of the deterministic and random
components of the diffusivity parameter, which is set to 0.9 in
the simulations (i.e. the deterministic component has a stronger
influence than the random component). The values of these param-
eters are set on the basis of numerical simulation experiments such
that the impact of the attractiveness of more populated locations
does influence the movement of populations, but does not domi-
nate it fully.Fig. 4

In addition to the above calculations, the diffusivity parameter
is set to 0 if the movement of the population in a certain direction
would mean the moving backward of the population to their ear-
lier location (i.e. where they came from) if there are not yet suffi-
cient number of time turns passed since this earlier move of the
population. In the simulations we require 5 time turns to be passed
before the population can move in the backward direction. All key
parameters involved in the description of the simulations are listed
in Table 11 with a brief explanation of the meaning of the
parameters.

All simulations started with a random set of original popula-
tions that occupied in average 1.5% of all available grid locations.
Initially there is at most one population in each grid location.
The initial occupancy level is set such that initially the simulations
have a sufficient, but not very large number of populations (around
90 populations over the simulated land area of 100 � 60 grid loca-
tions), which allows an initial growth and spreading of these pop-
ulations until their areas grow to the point where they start
interfering with each other. This allows sufficient variety among
the initial populations and also a variable density and area arrange-
ment of the populations by the time they get to the point where
they interfere with other populations. Each simulation was run
for 30,000 time turns. The maximal number of populations at
one grid location was set to be 8. If the number of residing popu-
lations would go above this limit at a certain grid location, due
to inward migration, the population with the lowest resource util-
isation efficiency was made extinct at this grid location. This limit
on the number of different populations in one grid location is set to
avoid competition between too many populations and it is approx-
imately in line with the upper limit of the number of distinct larger
populations co-existing in ancient towns and tribal alliances.

One may question the relevance of these simulations for human
populations. While these are based in general on the numerical
simulation of constrained diffusion – reaction systems, the partic-
ular nature of the simulated system and its constraints make these
relevant for the simulation of spreading and competition biological
populations. Furthermore, the setting of the rules and constraints
of the simulations make these particularly relevant for modelling
of dynamics of human populations (e.g. the attraction impact of
highly populated areas on setting the direction of migration, the
limit on the number of co-existing populations in locations). In
general, the same simulation framework could be adapted to the
simulation of the spreading and dynamics of other kinds of biolog-
ical populations, but these would require different rules and con-
straints (e.g. bacteria would be driven by presence and diffusion
of attractive and repellent molecules and tens – hundreds of bacte-
rial species may co-exist at a given location).
4. Main results: Areas of likely origin of successful populations

Using the simulations we found that the level of innovation and
the time persistence of successful populations negatively correlate
with the origin location’s distance from mountain ridges, and that
the resource utilization efficiency positively correlates with the
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origin’s distance from mountain ridges (Fig. 1A–C). These imply
that successful populations originating closer to mountain ridges
exist for longer and they make more impactful innovations. This
supports our assumptions about the positive impact of closeness
to natural barriers on the ability of the populations to persist and
develop significant cultural innovations.

Our results show that resource utilization efficiency correlates
positively, while the time persistence and level of innovation cor-
relate negatively with the origin’s land fertility for successful pop-
ulations (Fig. 1D–F). These imply that successful populations
originating from harsher lands (low land fertility) last longer and
innovate more, while those that originate from fertile lands are
more efficient in using resources. These support our assumptions
about the effect of land fertility on the innovation, persistence
and resource utilization ability of populations.

Our simulations confirm that successful populations are more
likely to originate from areas with isolated valleys and low land
fertility, where they develop high-impact cultural innovations, fol-
lowed by rapid expansion and emergence to dominance of the
same populations or their descendents from neighbouring fertile
lands. For further validation we considered the high-resolution
altitude and land-fertility data for Earth (Fischer et al., 2012;
Fig. 1. The relationship between natural constraints (mountain ridge distance, land fe
persistence, innovation). The panels show the best linear approximation of these relation
c ¼ 0:7154; p ¼ 3:65� 10�9; B) c ¼ �0:7769; p ¼ 5:06� 10�22; C) c ¼ �0:4591; p ¼
c ¼ �0:848; p ¼ 4:48� 10�17.

5

NOAA, 2016) and determined those areas which fit the above
description. We used the local Laplacian transform of the altitude
data with expansion of identified valley areas and the overlap of
these with high-fertility land areas – see details of the analysis of
the topographic data in the next section. The identified areas are
expected to match areas that are assumed to be the urheimat for
populations that became dominant around the world across his-
tory (e.g. Indo-Europeans (Piazza et al., 1995), Bantu (Campbell
and Tishkoff, 2010)). The identified areas are shown in Fig. 2A,
together with assumptions about urheimats of historical popula-
tions shown in Fig. 2B. The match between the predicted and
actual locations is very good. To assess the statistical validity of
the predicted areas as true successful population origins, we con-
sidered random locations on fertile lands and calculated the match
of these with predicted areas. The comparison results (Table 1)
show that our predictions match the accepted urheimat areas sig-
nificantly better than random locations.
5. Analysis of the world map and assumed areas of origin

We used accurate topographical mapping of the surface of Earth
to identify rugged, mountainous regions. We then identified where
rtility) and features of successful populations (resource utilization efficiency, time
ships as well. The corresponding correlations and related p-values are as follows: A)
7� 10�4; D) c ¼ 0:8774; p ¼ 1:21� 10�25; E) c ¼ �0:9696; p ¼ 1:04� 10�34; F)



Fig. 2. Geographical locations. A) The locations on the map of the world that were identified as possible origins of successful populations in accordance with our results based
on the simulations. B) The assumed areas of origin (urheimat) for a set of populations that became dominant in parts of the world across human history: 1 – Celts, 2 – Early
Indo-Europeans, 3 – Indo-Europeans, 4 – Turkic/Mongols (highlands), 5 – Turkic/Mongols, 6 – Austronesians (highlands), 7 – Austronesians, 8 – Semitic/Kushitic (highlands),
9 – Semitic/Kushitic, 10 – Bantu, 11 – Korean/Japanese/Manchu, 12 – Anatolian Farmers, 13 – Tibeto-Burmese/Tai-Kadai, 14 – Germanics, 15 – Germanics (lowlands), 16 –
Slavs, 17 – Inca, 18 – Maya, 19 – Papua, 20 – Greeks, 21 – Australian Aborigines, 22 – Hominids, 23 – Early American Natives (for further details see the text and Table 2).
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these regions border fertile lowland areas. Where these areas are
within sufficiently close distance of each other, we marked them
as potential origin points for successful populations.

For the ground-truth terrain data, we used the ETOPO1 Global
Relief Model (NOAA, 2016). This is a 1 arc-minute global relief
model build from global and regional data sets. For the land fertil-
ity data, we used the Harmonized World Soil Database v1.2
(Fischer et al., 2012). A version of this database, pre-processed to
indicate soil quality is available at 5 arcminute resolution from
the same source. Land parcels are categorized according to charac-
teristics such as organic carbon content, pH, water capacity, salin-
ity, and nutrients, putting each on a scale from 1 (high quality) to 4
(low quality) – we note that the ratings 5 – 7 in the database iden-
tify non productive areas (i.e. non-soil, permafrost, water). We up-
sampled this data to match the resolution of the ETOPO1 terrain
dataset.
6

To find rugged regions, we first applied the 2D Laplacian oper-
ator with the convolution matrix

L ¼
0 1 0
1 �4 1
0 1 0

2
64

3
75

to the relief map to highlight peaks and valleys in the landscape.
We then considered the absolute magnitude of each element, nor-
malized across the whole map and applied the threshold t = 0.3
element-wise across the array of the map. The threshold was set
such that we achieved a good match with our subjective estima-
tion of expected valley areas (i.e. where there are mountain ranges
on the map, we expect to find valley areas).

Next we applied a greyscale dilation of size l = 40 pixels (each
pixel is equivalent to 1 arc-minute, or approximately 2 km in both



Fig. 3. The quadrant of the grids world considered for the calculation of
attractiveness of population movement directions. The black grid location in the
middle is the current location of the population. The colored sections indicate the
relevant quadrants for the corresponding directions.
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directions) to the output. The greyscale dilation is effectively a
maximum filter over a sliding window, which spreads the identi-
fied areas beyond the mountainous regions towards lowland areas,
up to around 80 km from their focal point – i.e. each pixel value is
revised to be equal to the maximal original pixel value within the
distance of 40 pixels.

We then found the intersection of these regions with high-
quality soil regions (where the soil quality index is 1 for all pixels
in a contiguous area). These intersecting areas were then subjected
to another round of dilation of size r = 40 pixels to form larger con-
tiguous regions. Finally, the contiguous regions were enumerated,
using a von Neumann neighborhood (i.e. up, down, left and right
Fig. 4. Exemplary snapshots of the evolution of the spreading of populations in the simul
time turn period, with 50 time turns between the snapshots. The snapshots show both ex
from the lower-right direction. The spreading shows Turing-like patterns. The darker is t
The red spot indicates the origin grid location of this population.
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neighbors, ignoring the corner neighbors) structural parameter to
specify connectedness.

The centres of mass (COMs, i.e. the average of the location coor-
dinates in both planar directions of the pixels belonging to the
region) of these larger contiguous regions were identified as poten-
tial origin points for successful populations (see the triangles in
Fig. 2A).

We identified the assumedareas of origin for a set of knowhistor-
ical human populations using descriptive and map-based informa-
tion available in the literature. These identified origin or urheimat
areas are listed in Table 2, including the relevant references.

We compared the identified areas of possible origin of success-
ful populations with a random set of locations selected from fertile
land areas (soil quality index = 1) to see whether the former are
statistically significantly closer than the latter to assumed areas
of origin of historically known successful populations. We used
the two tailed, different standard deviations, t-test to compare
the mean distance from each of the 204 identified locations to
the nearest assumed area of origin, to the mean distance of
10,000 locations drawn randomly from the fertile land areas to
the nearest assumed area of origin. If a location is inside of an
assumed area of origin then the distance is considered to be zero.
The results of the comparison are reported in Table 1 and these
show that the two location distributions are significantly different
(the p-value is well below 0.01), implying that the determined
locations are statistically significantly closer to the assumed true
origin locations of successful historical populations than randomly
picked locations.
6. Sensitivity analysis of the computational model

In order to further check the validity of our results, we explored
the parameter sensitivity of our computational model. For this pur-
pose we used as key variables the number of mountain ridges, the
ations. Panels A) – D) show the evolution of the spreading of a population over a 200
pansion of the population in the upper-left direction and retraction of the population
he grey-scale color the larger is the population count in the respective grid location.



Table 1
Analysis of geographic locations. Comparison of the match of geographic locations identified in accordance with our results based on simulations and random geographic
locations in fertile areas with the assumed areas of origin (urheimat) of known successful populations.

Number of
locations

Mean distance from assumed
areas of origin (miles)

Standard deviation of distances from
assumed areas of origin (miles)

Two-tailed, un-equal standard deviations, t-test p-value
for the comparison of the two mean values

Identified locations 204 8.7457 8.5157 0.0006414
Random locations 10,000 10.858 8.7521 0.0006414

Table 2
Geographic location of urheimat areas of a set of historically known successful populations. The geographical locations are provided as quadrilaterals defined as quartets of
(latitude, longitude) value pairs, and in some cases as a union of two such quadrilaterals.

Number Population Urheimat area Geographical location

1 Celts (Cunliffe, 2018) Alps and Bavaria {(44.64,5.75); (46.53,14.08); (47.40,6.66); (48.02,14.33)} +
{(48.45,7.54); (49.07,11.71); (48.20,12.73); (48.05,8.76)}

2 Early Indo-Europeans (Mathieson et al.,
2018)

Southern Caucasus {(44.15,39.58); (42.63,41.59); (41.06,47.29); (42.50,46.91)} +
{(41.42,42.67); (41.18,44.39); (40.11,44.48); (40.63,42.36)}

3 Indo-Europeans (Mathieson et al., 2018;
Piazza et al., 1995)

Dniester – Volga area north of the
Caucasus

(48.68,34.56); 49.63,45.06); (46.27,49.32); (45.22,36.25)

4 Turkic/Mongols (highlands) (De Barros
Damgaard et al., 2018)

Tien-Shan and neighbouring
mountain areas

(46.29,85.48); (42.53,88.78); (38.38,68.40); (40.33,67.86)

5 Turkic/Mongols (De Barros Damgaard
et al., 2018)

Fergana Valley area (40.16,69.89), (40.74,70.20); (41.42,71.97); (40.45,72.95)

6 Austronesians (highlands) (Gray et al.,
2009)

Eastern Taiwan (22.75,120.44); (22.04,120.89); (24.86,121.20); (24.98,121.90)

7 Austronesians (Gray et al., 2009) Western Taiwan (23.04,120.03); (22.93,120.31); (24.39,120.69); (24.15,120.17)
8 Semitic/Kushitic (highlands) (Ehret,

1979)
South-West Ethiopian highlands (7.15,35.65); (7.67,38.25); (5.08,39.75); (4.83,35.28)

9 Semitic/Kushitic (Ehret, 1979) South West Ethiopia (9.42,36.16); (9.60,39.64); (7.54,39.44); (7.70,36.69)
10 Bantu (Campbell and Tishkoff, 2010) Boundary area of current Cameroon

and Nigeria
(6.40,6.79); (6.51,7.84); (5.08,8.01); (4.98,6.79)

11 Korean/Japanese/Manchu (Hammer
et al., 2006)

Northern Manchuria (55.63,121.51); (50.43,138.53); (43.06,133.35); (43.70,116.72)

12 Anatolian Farmers (Diamond and
Bellwood, 2003; Mathieson et al., 2018)

Southern Central Anatolia (37.94,39.01); (38.16,41.28); (37.76,40.82); (37.33,39.66)

13 Tibeto-Burmese/Tai-Kadai (Driem,
1993)

Yunnan (22.54,99.04); (23.42,103.40); (29.59,102.79); (29.72,98.20)

14 Germanics (Harke and Todd, 1994) Western Scandinavia (58.94,5.92); (61.39,11.78); (64.19,13.81); (62.24,5.26)
15 Germanics (lowlands) (Harke and Todd,

1994)
Denmark and Northern Germany (53.99,8.89); (57.04,8.43); (57.93,11.93); (55.42,14.14)

16 Slavs (Mielnik-Sikorska et al., 2013) Western Ukraine and South-West
Belarus

(49.95,25.65); (49.92,31.02); (48.47,26.51); (48.25,32.18)

17 Quechua/Inca (Diamond and Bellwood,
2003)

South-East Peru (�12.87,�75.12); (�12.24,�71.93), (�18.15,�65.57), (�18.07,�63.51)

18 Maya (Diamond and Bellwood, 2003) Western Guatemala (17.19,-90.99); (17.03,-89.24); (15.88,-89.86); (16.41,-90.56)
19 Papua (Bergström et al., 2017) Central and Eastern New Guinea {(�3.21,135.83); (�4.36,135.39); (�5.23,140.88); (�4.49,140.91)} +

{(�5.23,140.88); (�4.49,140.91); (�9.29,144.65); (�6.25,147.56)}
21 Australian Aborigines (Bouckaert et al.,

2018)
North West part of Northern
Territories of Australia

(�11.22,130.40); (�12.07,134.19); (�14.97,132.87); (�14.80,129.75)

22 Hominids (Hammer et al., 2006) Sothern Ethiopia – Kenya – Western
Tanzania and Central South Africa

{(12.00,39.84); (�10.00,33.85); (2.84,30.74); (12.27,37.72)} +
{(�15.27,34.80); (�30.49,27.06); (�26.49,23.09); (�13.77,32,24)}

23 Early American Natives (Moreno-Mayar
et al., 2018)

Eastern Beringia (Southern Alaska and
Western Yukon)

(60.95, �155.26); (65.37,-144.89); (58.84,-123.79); (54.93, �130.30)
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number of low fertility land areas, the average difficulty of crossing
mountain ridges (f), and the steepness of competition between co-
located populations (b).Tomeasure themodel sensitivitywe consid-
ered the variation of the key relationships between ridge distance
and land fertility of the origin location and innovation, time persis-
tenceand resourceutilization efficiencyof populations, respectively.

The sensitivity of the computational model was assessed using
5 different values for each parameter, and 8 – 10 simulations for
each parameter value (all other considered parameters were held
constant at the default value). The values considered for the
parameters were as follows: 5, 10, 20, 30, 60 mountain ridges; 2,
5, 10, 20, 40 low fertility land areas; 2, 10, 20, 50, 100 for the
mountain ridge crossing difficulty parameter f;and 8, 12, 24, 70,
150 for the competition steepness parameter b. The sensitivity
analysis data is shown in Tables 3–10.

We found that the number of mountain ridges has very little
impact on the nature of the key relationships. The ridge distance
8

and resource utilization relationship reverses for high numbers of
mountain ridges. In other cases the relationships maintain the
same nature as reported in Table 1 and the statistical significance
of the relationships increases with the number of mountain ridges.
These results are summarized in Supplementary Tables 3 and 4.

For small number of low fertility areas the correlations with the
origin’s land fertility get reversed for innovation and also in one
case for the resource utilization efficiency and in one case for time
persistence. For higher numbers of low land fertility areas the
relationships with the origin’s land fertility are the same as the
ones reported in Table 1. In terms of ridge distance relationships
we found the reversal for the relationships for innovation for mid
range values of the number of low fertility areas and also in once
case for the resource utilization efficiency relationship. In all other
cases the relationships reported in Table 1 are maintained. The
results for the variation of the number of low land fertility areas
are shown in Supplementary Tables 5 and 6.



Table 3
The key relationships for variable number of mountain ridges. Correlation values followed by corresponding p-values in brackets. Numbers in bold italic are not in agreement with
those reported in Table 1 for the corresponding relationship.

Mountain ridges 5 10 30 60
Relationship with origin’s distance from mountain ridges

Resource utilisation 0.448 (6.8E-5) 0.4755 (2.76E-12) �0.54 (6.58E-13) �0.54 (5.86E-13)
Time persistence �0.35 (1.4E-12) �0.6189 (7E-27) �0.677 (5.33E-18) �0.7016 (8E-20)
Innovation �0.15 (4.32E-2) �0.1738 (3.65E-7) �0.3287 (1.53E-5) �0.3595 (1.82E-6)

Table 4
The key relationships for variable number of mountain ridges. Correlation values followed by corresponding p-values in brackets.

Mountain ridges 5 10 30 60
Relationship with origin’s land fertility

Resource utilisation 0.78 (1.53E-16) 0.7978 (2.9E-17) 0.8979 (2.45E-32) 0.9427 (3.86E-34)
Time persistence �0.9 (8.76E-18) �0.658 (1.82E-12) �0.809 (3.35E-12) �0.839 (2.25E-18)
Innovation �0.346 (2.8E-3) �0.6525 (2.86E-8) �0.882 (1.06E-14) �0.918 (1.65E-18)

Table 5
The key relationships for variable number of low land fertility areas. Correlation values followed by corresponding p-values in brackets. Numbers in bold italic are not in
agreement with those reported in Table 1 for the corresponding relationship.

Low land fertility areas 2 5 20 40
Relationship with origin’s distance from mountain ridges

Resource utilisation 0.324 (2.16E-2) 0.4281 (2.15E-3) �0.3473 (2.79E-5) 0.5228 (4.33E-14)
Time persistence �0.55 (3.41E-3) �0.6322 (1.2E-3) �0.485 (1.02E-15) �0.607 (2.96E-25)
Innovation �0.44 (9.11E-3) 0.2057 (1.27E-2) 0.6033 (2.95E-3) �0.427 (1.53E-11)

Table 6
The key relationships for variable number of low land fertility areas. Correlation values followed by corresponding p-values in brackets. Numbers in bold italic are not in
agreement with those reported in Table 1 for the corresponding relationship.

Low land fertility areas 2 5 20 40
Relationship with origin’s land fertility

Resource utilisation 0.858 (3.51E-3) �0.707 (7.62E-10) 0.9652 (1.62E-42) 0.9652 (1.62E-42)
Time persistence 0.746 (1E-4) �0.7748 (1.3E-6) �0.9107 (8.5E-41) �0.9107 (4.9E-39)
Innovation 0.4873 (1.9E-3) 0.5336 (2.7E-4) �0.7495 (1E-14) �0.7295 (1.1E-15)

Table 7
The key relationships for variable ridge crossing difficulty. Correlation values followed by corresponding p-values in brackets. Numbers in bold italic are not in agreement with
those reported in Table 1 for the corresponding relationship.

Ridge crossing difficulty 2 20 50 100
Relationship with origin’s distance from mountain ridges

Resource utilisation �0.325 (5.3E-5) 0.608 (4.58E-12) 0.5227 (1.26E-9) �0.4366 (6.44E-5)
Time persistence �0.66 (8.5E-19) �0.381 (4.8E-4) �0.7 (8.3E-4) �0.7551 (5.9E-7)
Innovation 0.264 (6.08E-2) �0.3815 (5.43E-5) �0.3968 (2.23E-4) �0.4306 (2.22E-2)

Table 8
The key relationships for variable ridge crossing difficulty. Correlation values followed by corresponding p-values in brackets.

Ridge crossing difficulty 2 20 50 100
Relationship with origin’s land fertility

Resource utilisation 0.665 (2.75E-9) 0.7245 (6.31E-13) 0.8881 (5.4E-25) 0.8253 (1.54E-17)
Time persistence �0.94 (2.9E-20) �0.805 (3.75E-10) �0.921 (9.86E-20) �0.936 (1.95E-18)
Innovation �0.39 (1.47E-3) �0.4235 (3.55E-4) �0.6715 (1.08E-8) �0.6767 (1.76E-7)

Table 9
The key relationships for variable level of competition. Correlation values followed by corresponding p-values in brackets. Numbers in bold italic are not in agreement with those
reported in Table 1 for the corresponding relationship.

Level of competition 8 24 70 150
Relationship with origin’s distance from mountain ridges

Resource utilisation 0.386 (5.27E-7) 0.3025 (2.05E-4) 0.4026 (1.69E-6) 0.3128 (4.26E-4)
Time persistence 0.587 (4.04E-7) �0.2776 (5.8E-5) �0.3202 (2.27E-7) �0.5196 (5.78E-8)
Innovation 0.291 (6.09E-3) 0.31 (1.36E-3) �0.1864 (6.59E-3) �0.2052 (2.06E-2)
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Table 10
The key relationships for variable level of competition. Correlation values followed by corresponding p-values in brackets. Numbers in bold italic are not in agreement with those
reported in Table 1 for the corresponding relationship.

Level of competition 8 24 70 150
Relationship with origin’s land fertility

Resource utilisation 0.315 (1.77E-3) 0.4458 (4.21E-6) 0.4866 (3.75E-7) �0.68 (1.26E-14)
Time persistence 0.901 (1.5E-13) 0.8303 (6.81E-10) 0.6265 (4.35E-5) �0.665 (6.50E-13)
Innovation 0.313 (1.32E-2) 0.3748 (2.68E-3) �0.7494 (3.43E-4) 0.4398 (9.17E-6)

Table 11
Summary of the key symbols and notations used in the mathematical notations and
equations throughout the paper, together with the meaning and relevance of these.

Symbol Meaning

x Location
t Time
pðx; tÞ Population at location x and timet
Dðp; xÞ Diffusivity of the environment, which depends on the population

size and location
Fðp; x; tÞ Reaction term of the reaction – diffusion equation, representing

the population change depending on the population size, location
and time

pjðx; tÞ The j-th population at location x and timet
pj Characteristic resource utilization ability of the j-th population
s Direction of diffusion, which can take the values (–1,0), (1,0), (0,–

1, (0,1), which correspond to the directions left, right, down and
up.

rt;jx;s Stochastic diffusivity parameter for the j-th population at
location x and time t in the directions

f x;t The effective resource utilization efficiency functions for a given
location and time, considering land fertility and the
simultaneouspresence of other populations

bx;s Barrier value for location x and direction s, this characterises
diffusion barriers, which implement mountain ranges in the
simulations

ntx;s Value of the diffusivity parameter rt;jx;sifpjðx; tÞ P bx;s
ntx;s;dtm Deterministic component ofntx;s
ntx;s;rnd Random component ofntx;s
M Mountain ridge, comprising of locations x belonging to the

mountain ridge
f Mountain ridge maximal height parameter, the maximal height

of mountain ridges is100 � f
kðxÞ Level of low land fertility at locationx
g1; :::; g100 Bits of the population’s socio-technical repertoire that determine

the resource utilisation abilityp
g Innovation likelihood parameter
i Amount of resource utilisation innovation, following an

innovation event

hjx;t Relative resource utilisation efficiency for the j-th population at
location xand timet

b Parameter characterising the competition between populations
l Mortality rate
Pðx; tÞ Total population at location xand timet
Jx;t Set of indices of all population at location xand timet
Qx;s Neighbourhood quadrant in the direction sfor the locationx
Pmax
x;t;s Maximum value of total population in one location within the

quadrant Qx;s at timet

Pmax
x;t;s

� Normalized maximum value of total population in one location
within the quadrant Qx;s at timet

aðx; t; sÞ Attractiveness of moving population in the direction sfrom the
location x at timet

k1; k2 Parameters determining the migration direction preference.
z Parameter determining the balance between the deterministic

and random components the diffusivity parameters
1 Random parameter determining the value of the random

component of the diffusivity parameters
vx;t;s Parameter determining the value of the diffusivity parameters,

reflecting the attractiveness for migration of the relevant
movement direction s for location x at timet

L 2D Laplacian operator convolution matrix
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The key relationships relative to the distance of origin from
mountain ridges are reversed for resource utilization efficiency
for very low and very high crossing difficulty and for innovation
10
for very low crossing difficulty. In all other cases the relationships
reported in Table 1 are maintained and strengthen for higher cross-
ing difficulty. In terms of the relationships relative to the origin’s
land fertility, the correlations reported in Table 1 are maintained
and increase in strength with increasing crossing difficulty. These
results are shown in Supplementary Tables 7 and 8. We note that
crossing difficulty in the real world may be influenced by climate
and technology (e.g. harsh climate may increase crossing difficulty,
while technological advances may reduce crossing difficulty).

For low level of competition several of the key relationships with
time persistence and innovation get reversed for both the origin’s
land fertility and its distance from mountain ridges. The resource
utilization relationships are maintained as in Table 1, with the
exception of the case of very high competition and the origin’s dis-
tance from mountain ridges. For high competition values the inno-
vation and time persistence relationships with the origin’s
distance from mountain ridges are the same as the ones reported
in Table 1. Some of the key relationships for the origin’s land fertility
are reversed even for higher competition values. The competition
steepness sensitivity analysis results are shown in Supplementary
Tables 9 and 10. We note that in the real world technology may
increase the steepness of competition, making the impact of access
to fertile land areas on the success of populations much larger.

Our sensitivity analysis shows that in most cases the parame-
ters do not influence very much these key relationships, although
in some cases the relationships may get weakened or even
reversed. This means that the proposed computational model is
generally robust and the results that we reported are valid across
a range of parameter settings. However, our analysis also shows
that some parameters in certain cases weaken to some extent
the validity of the general results, pointing to the importance of
these parameters both in terms of setting of the computational
model and also in terms of actual environmental and socio-
technical settings that are valid in that environment.

While we have not investigated the impact of all considered
parameters, as we explained in Section 3, in general we aimed to
set these parameter values to be in appropriate ranges in order
to generate sufficiently complex simulations that were also feasi-
ble to be run sufficiently many times. In our view the above consid-
ered parameters are the key parameters that have the potential to
have the biggest impact on the simulations.

7. Conclusions

The work presented here uses computational simulations and
predictive analysis of geographical data to support the hypothesis
that successful populations of humans emerge in areas with many
valleys and relatively low land fertility, which are sufficiently close
to highly fertile lands. Our work predicts a number of geographical
areas which are currently not associated with origins of successful
human populations, but can be considered as candidate urheimats
for known successful populations without identified origin location
(Fig. 2).

The model and analysis presented here has implications for
other fields of science as well. In particular, in the context of the
process of speciation and spreading of biological species our results
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imply that areas with high ‘endemicity’ (i.e. relatively many ende-
mic species), which are sufficiently separated by natural barriers,
but provide sufficient life supporting resources, are the most likely
locations of speciation events. This has been recently evidenced by
analysis of experimental data (Rabosky et al., 2018). In the context
of emergence of fundamentally novel technologies and technical
innovations, our work suggests that these may happen most often
in environments that are sufficiently protective over relatively long
term (e.g. in terms of patenting protection or in terms of required
in-depth technological know-how that is not easily accessible –
equivalent of natural barriers), require and support sufficient
blue-sky thinking (i.e. addressing fundamental questions of the
technology – equivalent of drive for cultural innovations) and are
also sufficiently close to places with appropriately trained work-
force and venture capital funding ready to invest in new technolo-
gies (equivalent of high fertility areas).

8. Data and code availability

The source code of the software used for the simulations and
the simulations data are available on request from the correspond-
ing author.

The map and soil quality data that support the findings of this
study are available from: ETOPO1 Global Relief Model, https://
www.ngdc.noaa.gov/mgg/global/global.html, doi:https://doi.or
g//10.7289/V5C8276M and Harmonized World Soil Database
v.1.2, http://www.fao.org/soils-portal/soil-survey/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/. The software
code for the analysis of these data is available at https://github.c
om/StanDeSiecle/HumanOrigins. The code for simulations and
the simulations data used for the paper are available on request
from the authors.
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Smrčka, V., Shevnina, I., Logvin, A., Sjögren, K.G., Štolcová, T., Tashbaeva, K.,
Tkachev, A., Tulegenov, T., Voyakin, D., Yepiskoposyan, L., Undrakhbold, S.,
Varfolomeev, V., Weber, A., Kradin, N., Allentoft, M.E., Orlando, L., Nielsen, R.,
Sikora, M., Heyer, E., Kristiansen, K., Willerslev, E., 2018. 137 ancient human
genomes from across the Eurasian steppes. Nature. https://doi.org/10.1038/
s41586-018-0094-2.

D.M. Debinski R.D. Holt. A survey and overview of habitat fragmentation
experiments. 2000. Biol Conserv. 10.1046/j.1523-1739.2000.98081.x

Diamond, J., Bellwood, P., 2003. Farmers and their languages: The first expansions.
Science 80. https://doi.org/10.1126/science.1078208.

G.V. Driem Language change, conjugational morphology and the sino-tibetan
urheimat 1993 Hafniensia Acta Linguist 10.1080/03740463.1993.10415452.

Ehret, C., 1979. On the antiquity of agriculture in Ethiopia. J. Afr. Hist. https://doi.
org/10.1017/S002185370001700X.

S. Fedotov D. Moss D. Campos Stochastic model for population migration and the
growth of human settlements during the Neolithic transition 2008 Rev. E – Stat.
Nonlinear, Soft Matter Phys Phys 10.1103/PhysRevE.78.026107.

Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L., Wiberg, D.,
2012. Global Agro-ecological Zones-Model Documentation (GAEZ v. 3.0). Food
and Agriculture Organization of the United Nations.

Flather, C.H., Bevers, M., 2002. Patchy reaction-diffusion and population abundance:
The relative importance of habitat amount and arrangement. Am. Nat. https://
doi.org/10.1086/324120.

García-Ramos, G., Rodríguez, D., 2002. Evolutionary speed of species invasions.
Evolution (N. Y). https://doi.org/10.1554/0014-3820(2002)056[0661:esosi]2.0.
co;2.

Gray, R.D., Drummond, A.J., Greenhill, S.J., 2009. Language phylogenies reveal
expansion pulses and pauses in pacific settlement. Science 80. https://doi.org/
10.1126/science.1166858.

Hammer, M.F., Karafet, T.M., Park, H., Omoto, K., Harihara, S., Stoneking, M., Horai,
S., 2006. Dual origins of the Japanese: Common ground for hunter-gatherer and
farmer Y chromosomes. J. Hum. Genet. https://doi.org/10.1007/s10038-005-
0322-0.

Harke, H., Todd, M., 1994. The Early Germans. Britannia. 10.2307/527028.
N. Isern J. Zilhão J. Fort A.J. Ammerman Modeling the role of voyaging in the coastal

spread of the Early Neolithic in the West Mediterranean 2017 Natl. Acad. Sci. U.
S. A Proc 10.1073/pnas.1613413114.

C. Jeong A.T. Ozga D.B. Witonsky H. Malmström H. Edlund C.A. Hofman R.W. Hagan
M. Jakobsson C.M. Lewis M.S. Aldenderfer A.D. Rienzo C. Warinner Long-term
genetic stability and a high-altitude East Asian origin for the peoples of the high
valleys of the Himalayan arc 2016 Natl. Acad. Sci. U. S. A Proc 10.1073/
pnas.1520844113.

A. Kitchen C. Ehret S. Assefa C.J. Mulligan Bayesian phylogenetic analysis of Semitic
languages identifies an Early Bronze Age origin of Semitic in the Near East 2009
R. Soc. B Biol. Sci Proc 10.1098/rspb.2009.0408.

Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K., Sudmant,
P.H., Schraiber, J.G., Castellano, S., Lipson, M., Berger, B., Economou, C.,
Bollongino, R., Fu, Q., Bos, K.I., Nordenfelt, S., Li, H., De Filippo, C., Prüfer, K.,
Sawyer, S., Posth, C., Haak, W., Hallgren, F., Fornander, E., Rohland, N., Delsate,
D., Francken, M., Guinet, J.M., Wahl, J., Ayodo, G., Babiker, H.A., Bailliet, G.,
Balanovska, E., Balanovsky, O., Barrantes, R., Bedoya, G., Ben-Ami, H., Bene, J.,
Berrada, F., Bravi, C.M., Brisighelli, F., Busby, G.B.J., Cali, F., Churnosov, M., Cole,
D.E.C., Corach, D., Damba, L., Van Driem, G., Dryomov, S., Dugoujon, J.M.,
Fedorova, S.A., Gallego Romero, I., Gubina, M., Hammer, M., Henn, B.M., Hervig,
T., Hodoglugil, U., Jha, A.R., Karachanak-Yankova, S., Khusainova, R.,
Khusnutdinova, E., Kittles, R., Kivisild, T., Klitz, W., Kučinskas, V.,
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