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Abstract

Controllers capable of exhibiting multiple behaviors is a long-
standing goal in artificial life. Evolutionary robotics ap-
proaches have demonstrated effective optimization of robotic
controllers, realizing single behaviors in a variety of domains.
However, evolving multiple behaviors in one controller re-
mains an outstanding challenge. Many objective selection al-
gorithms are a potential solution as they are capable of opti-
mizing across tens or hundreds of objectives. In this study,
we use Lexicase selection evolving animats capable of both
wall crossing and turn/seek behaviors. Our investigation fo-
cuses on the objective sampling strategy during selection to
balance performance across the two primary tasks. Results
show that the sampling strategy does not significantly alter
performance, but the number of evaluations required varies
significantly across strategies.

Introduction
Increasing the generality of robotic controllers is an impor-
tant area of development in autonomous systems. This “gen-
eral capability” can mean both that a controller performs
well across variations of a single task (semi-generalized
control), and/or competent in multiple, orthogonal task do-
mains. Automatic design of effective controllers in prob-
lems requiring a combination of these two forms of gener-
ality, i.e. competency in multiple task domains where each
task entails multiple related sub-tasks, is a challenging but
achievable goal in evolutionary robotics (ER).

In previous work we have shown that Lexicase selec-
tion (Spector, 2012) is an effective many-objective se-
lection operator realizing semi-generalized control in a
quadruped wall-crossing task (Moore and Stanton, 2017).
Evolved controllers crossed the majority of wall heights en-
countered, outperforming previous evolutionary strategies
custom-designed for the task (Stanton and Channon, 2013).
One hundred wall heights are treated as individual objec-
tives within the wall-crossing task, resulting in a 100 objec-
tive search space (see Figure 1 for an example at maximum
height). However, there is significant overlap between ob-
jectives since the overall task is to exhibit a semi-generalized
locomotion behavior enabling crossing walls of any height
to reach a target objective. Lexicase selection compares

Figure 1: Agent facing the target, separated from it by the
wall. In this case the wall is at maximum height (objective
100).

individuals in a tournament objective by objective. Once
an individual is identified that is better than the others in
an objective, that individual is selected. Given this ability
to evaluate a subset of the population objective by objec-
tive, Lexicase can reduce computational overhead in high-
dimensional spaces.

In this paper, we expand on our previous investigations
by adding a second locomotion task, turn and seek. Turn
and seek requires an animat to locate a target placed any-
where on an arc from −90◦ to 90◦ in 1.8◦ increments. In
the same way as in cross wall, the task is broken up into 100
objectives. Animats are evolved across all 200 possible ob-
jectives, also referred to as environments, attempting to elicit
generalized control in both task domains. In this study, we
investigate different methods of sampling from the 200 ob-
jectives during evolutionary time, assessing which strategies
lead to high generalized performance and which are most
computationally efficient. Five treatments sample from the
200 objective space in different ways. Although we expect
all treatments to evolve some baseline level of effective per-
formance, our hypothesis is that altering the sampling strat-
egy will emphasize different evolutionary characteristics in
Lexicase, resulting in performance differences in the final
populations.



Results show that every two-task sampling strategy inves-
tigated evolves effective performance across the two tasks.
Further, significant differences in performance do not arise
between two-task treatments. However, the sampling strat-
egy applied can significantly alter how many objectives, and
thus how many evaluations, are conducted during an evolu-
tionary run. We discuss this result through a novel analysis
of the sub-objectives in each task, examining the filtering
power of each objective and how differences between ob-
jectives assessed by this metric affect the operation of Lexi-
case selection. We conclude that due to implicit probabilis-
tic bias towards sub-objectives separating populations more
effectively in the multidimensional fitness space, naive Lex-
icase sampling of the full 200 objective space is as effective
as the other treatments proposed for these two tasks. This is
an important finding since a naive sampling strategy is more
computationally efficient and avoids the creation of an addi-
tional parameter that must be specified at design time.

Background and Related Work
Evolutionary robotics techniques (Nolfi and Floreano,
2000), applied specifically to robot controller design, have
demonstrated effective behaviors in legged animat locomo-
tion (Baydin, 2012; Clune et al., 2009) and the transfer of
controllers to reality (Ruud et al., 2016; Koos et al., 2010;
Stanton, 2018) amongst many others. Multiple objective al-
gorithms are increasingly being used to improve not only
performance but also aspects of resilience to damage, be-
havioral robustness, and controller generalizability (Pinville
et al., 2011). These secondary objectives enhance robotic
systems, often by drawing on additional fitness metrics de-
rived from biological observation (Moore and McKinley,
2016). Evolving multiple behaviors has arisen as a chal-
lenge for the field with approaches including behavioral di-
versity (Doncieux and Mouret, 2013) and evolving multiple
movement behaviors in one platform such as walking, turn-
ing, and jumping (Huizinga and Clune, 2019).

Generalized behaviors encompass: the ability to learn and
react to environmental information across multiple unique
environments (Lehman et al., 2013), the capability to adapt
and reconfigure due to damage (Kriegman et al., 2019),
and the expression of multiple locomotive behaviors in
one robot (Cully et al., 2015). In many cases, multi-
objective (Deb et al., 2002) and many-objective algorithms
like Lexicase selection enable evolving across multiple fit-
ness metrics. In this paper, we expand on earlier investiga-
tions (Moore and Stanton, 2017, 2018, 2019) by adding a
second meta-task to the wall crossing task. Lexicase selec-
tion allows us to evolve animats across 200 individual objec-
tives. For these large search spaces, downsampling objec-
tives for consideration during Lexicase selection (Helmuth
and Spector, 2020; Hernandez et al., 2019) is an effective
strategy to reduce computational overhead by only consid-
ering a subset of the objective space per generation. In this

paper, we continue to employ downsampling, assessing in-
dividuals in up to 10 objectives per generation as in previous
wall-crossing experiments.

Methods
Quadrupedal Animat Figure 1 shows the animat which
has a cuboid torso with four legs placed at the lower corners.
Each two segment leg is connected to the torso with 2-degree
of freedom (DOF) hip joints allowing for up/down and side-
to-side sweeping movement. The knees are 1-DOF allowing
the legs to extend or contract toward the middle of the torso.
Two sensors placed on the left and right side of the torso
provide positional input to the controller for the relationship
between the animat and the target. The animat is evolved on
a flat high-friction surface.

Controller Animats are controlled by feed-forward arti-
ficial neural networks (ANN) as in (Moore and Stanton,
2020). 16 inputs provide: 2 periodic signals to promote os-
cillatory motion, 2 inputs for animat position relative to the
target, and joint feedback for the 12 leg joints. A hidden
layer comprising 12 nodes connects the inputs to the output
nodes. 12 outputs provide a control signal for each DOF in
the animat. Hips have 2-DOF requiring two inputs to re-
port joint orientation. An animat’s genome consists of 336
evolvable weights for each connection between nodes.

Tasks Two tasks are designed to elicit unique behaviors
from animats in the simulation. The wall crossing task re-
quires an animat to move to a target placed on the opposite
side of a variable height wall. Wall heights range from very
short to the height of the animat’s hip over 100 gradations.
Each wall height is an objective used in selection. Figure 2
shows the second task, turn and seek, requiring an animat to
move toward a target placed on a semicircle spanning from
the animat’s left, to front, and finally to its right. 100 ob-
jectives are also created for this task advancing along the
semicircular arc by 1.8◦.

Evolutionary Algorithm with Lexicase Selection Popu-
lations of 50 individuals are evolved for 5,000 generations
with downsampled ε-Lexicase selection (La Cava et al.,
2016). 20 replicate runs are conducted per treatment. Ob-
jectives are shuffled per generation and sampled from either
the entire 200 objective space, or limited to a subset of the
objective space depending on the treatment. During a se-
lection event, 5 individuals are drawn randomly from the
population competing in up to 10 objectives downsampled
from the total possible 200. While the subset of individuals
is being compared on an objective an ε of 10% is applied
consistent with earlier work (Moore and Stanton, 2020). Ef-
fectively, any individual within 90% of the best individual’s
performance on that objective is considered tied and moves



Figure 2: The turning task is broken down into 100 sub-
objectives with the target box placed in the range of −90◦−
90◦. Fitness represents how far the animat is from the target
at the end of the simulation. (Not to scale.)

on to the next objective in the selection process with the best
individual. This ε value is effective in continuous objective
space domains for metrics like distance to target as small
performance differences don’t substantially separate two in-
dividuals in terms of observed behavior. If all 10 objectives
are exhausted and more than one individual remains, we ran-
domly select one of the remaining individuals and record the
selection as a tiebreak event.

Treatments Our primary focus is to examine how objec-
tives should be sampled per generation from the two tasks
to evolve effective generalized control. Three primary treat-
ments alter the objective sampling mechanics:

1. naive 2t acts as our baseline and samples 10 objectives
uniformly across the two tasks. The order of the sampled
tasks is random, preventing one task from always being
the first used in selection which could bias the algorithm.
This is the normal operation of Lexicase selection.

2. even-shuf 2t samples 5 objectives from the wall-crossing
task and 5 objectives from the turning task. The 10 ob-
jectives are then shuffled to randomize the order of occur-
rence during selection.

3. flipN 2t treatments sample 10 objectives from a single
task per generation. After N generations, the task being
sampled from flips and objectives are sampled from the
next task. For example, for N = 1 we change objectives
from wall-crossing to turning every other generation. Two
treatments with N = 1 and N = 50 are evaluated.

Results and Discussion
One Task vs Two Task Performance In previous work
we have evolved individuals for wall crossing across 100
unique environments (objectives). To provide a baseline
for the other treatments in this study, naive 1t establishes a

benchmark in both wall crossing and turning tasks. naive 1t
individuals are only evolved on wall crossing as in previ-
ous investigations, but some of the behaviors for wall cross-
ing carry over to turning as the target exists in both tasks.
The best individuals for naive 1t are selected solely based on
their wall crossing performance, whereas the naive 2t treat-
ments described previously consider performance across
both tasks.

Figures 3 and 4 plot the distributions of the best individual
per replicate for the naive 1t and naive 2t treatments. Indi-
viduals in both treatments evolve high performance on low
wall heights but differences arise on moderate wall heights.
Performance in both tapers off as wall heights reach their
upper limit. This is consistent with earlier results, as high
wall heights require that the animat evolve a very specific
behavior to cross. Still, naive 1t significantly outperforms
naive 2t in wall crossing effectiveness across wall heights
using a Wilcoxon rank-sum test with Bonferroni correc-
tion. This statistical test is used when reporting significance
throughout this study. For turning, naive 1t demonstrates
the similarities between the two tasks as targets placed di-
rectly in front of the animat are still solvable even though the
individuals were not evolved for this task. However, perfor-
mance tapers off drastically as the target moves to the sides
with many individuals not exhibiting substantial movement
toward the target. In this task, naive 2t significantly outper-
forms naive 1t evolving near perfect performance by gener-
ation 500.

Figure 3: naive 1t (blue) and naive 2t (red) best individ-
ual per replicate in wall crossing task. Fitness scores below
−0.4 correspond to individuals not being able to cross the
wall obstacle.

The inclusion of turning as a task and subsequent increase
in the number of objectives in naive 2t does hinder per-
formance in wall crossing. Since 200 objectives are now
present and uniformly sampled from, the difference in per-
formance may be that the wall crossing objectives aren’t as-
sessed as much during evolution. Accordingly, we conduct a



Figure 4: naive 1t (blue) and naive 2t (red) best individual
per replicate in the turning task. naive 2t evolves perfect
performance in this task so boxes are not visible.

second naive 2t treatment evolving animats for 10,000 gen-
erations. The doubling of generations should compensate
for the potential loss of wall crossing objective selection in
naive 2t. We find that indeed, there is no significant differ-
ence in performance between naive 1t and naive 2t-10000
in wall crossing, see Figure 5. However, there is also no sig-
nificant difference between naive 2t and naive 2t-10000 in
wall crossing. naive 2t-10000 falls in between naive 1t and
naive 2t for wall crossing performance. A naive approach
is capable of attaining similar performance in wall crossing,
while evolving the ability to navigate to a target placed in a
semicircle around it but only after twice the generations as
a naive approach evolved only for wall crossing. Our goal
with the remaining treatments is to investigate whether or
not altering the objective sampling mechanism allows for
effective two behavior performance to evolve in the same
number of generations as one task.

Two Task Treatment Performance Figure 6 plots the
performance in wall crossing, turning, and mean perfor-
mance across tasks for all treatments conducted in this study
at generation 5,000. As shown in the figure, all two task
treatments evolve effective turning behaviors with no sig-
nificant difference in performance between them. Further-
more, performance in wall crossing is similar for all two task
treatments as well after 5,000 generations. The main perfor-
mance difference remains that naive 1t does not evolve ef-
fective turning performance as it is not evolved in that task.

Lexicase Dynamics We next examine the dynamics of
Lexicase selection across the treatments. Although perfor-
mance is similar, the characteristics of the selection process
vary. Figure 7 plots the number of environments per repli-
cate considered across all selection events illustrating how

Figure 5: naive 1t (blue) and naive 2t-10000 (red) best indi-
vidual per replicate in the wall crossing task. No significant
difference in performance between the two.

much “deeper” Lexicase went into the subsampled objec-
tives to separate individuals.

Figure 8 plots the number of simulations per replicate
considered across all selection events quantifying how many
individuals were evaluated in the subsampled objectives un-
der consideration. Together, these two metrics indicate the
computational efficiency of a treatment, and dynamics of the
two tasks influence on Lexicase. As shown in both figures,
the flip treatments have considerable disparity between the
wall and turn tasks. Objectives are sampled from either wall
or turn within a generation in contrast to naive 2t and even-
shuf 2t. The high occurrence of environments and individ-
ual evaluations in the flip treatments in turning indicates that
the task is not as efficient at separating individuals as wall
crossing. That is, in wall crossing, individuals are sepa-
rated within relatively few subsampled objectives resulting
in fewer environments needing to be evaluated during selec-
tion.

naive 2t and even-shuf 2t do not show this disparity be-
tween tasks, presumably due to the mixing of both wall
crossing and turning tasks being sampled for an individ-
ual selection event. Although naive 2t does not enforce that
objectives be sampled from both tasks, in practice uniform
sampling across two tasks with the same number of objec-
tives results in an average of half and half split. Indeed, we
do not observe a significant difference in the number of envi-
ronments considered during selection, nor in the total num-
ber of individual evaluations between the two non-flipping
treatments. Considering the disparities between flipping and
non-flipping treatments in Figures 7 and 8, we hypothesize
that the turning environment is not as effective a filter as wall
crossing, resulting in more objectives having to be consid-
ered, and consequently more individual simulations having
to be conducted.



Figure 6: Performance of the best individual by average performance between the two tasks per replicate at the end of evolution
across all 5,000 generation treatments.

Figure 7: Total number of environments considered per
replicate over evolutionary time. all is the aggregate of wall
and turn tasks. Higher numbers indicate that selection typ-
ically required more environments per event to separate the
best individual during the Lexicase operation.

Figure 8: Total number of simulations per replicate over
evolutionary time. all is the aggregate of wall and turn
tasks. Simulations are the primary computational cost for
this study.

Figure 9 plots the number of tiebreaks per treatment
across replicates. Significant differences arise across treat-
ments except between naive 2t and even-shuf 2t, and be-
tween flip1 2t and flip50 2t. The addition of turning signif-
icantly increases the number of tiebreaks between naive 1t

Figure 9: Number of tiebreaks across replicates per treat-
ment. Tiebreaks indicate a failure to isolate one individual
during the Lexicase selection process and are effectively a
random selection event.

and naive 2t, while switching between tasks in the flip treat-
ments apparently further increases the number of tiebreaks.

Figure 10 plots the percentage of individuals in the selec-
tion subset filtered out by the objective in the left column,
and the number of times an objective occurs in the right col-
umn. As shown in the figures, medium wall height objec-
tives are effective filters in wall crossing. Short walls do not
act as strong selectors as most individuals can cross them
provided they evolve some form of locomotion, while tall
walls are also weak selectors since most individuals cannot
cross them. Middle wall heights are thus the better selectors
as effective wall crossers make it past, while those without
robust locomotion are filtered out. This filtering dynamic ap-
pears universal across all treatments. Turning demonstrates
a different filtering characteristic where far left and far right
targets are the strongest selectors while targets place to the
front of the animat are less effective. Objectives placed in
front and front-sides of the animat likely have strong simi-
larity to the low wall heights in wall crossing as the essen-
tial task is to navigate to a target placed in front or nearly



straight forward to the animat in both tasks. Sensory infor-
mation would also be similar to wall crossing in these ob-
jectives. Thus the shape of the target placement manifests in
the filtering plot.

The right side of Figure 10 shows the number of times an
objective was used in the selection process for each treat-
ment. For naive 1t, naive 2t, and even-shuf 2t, the objective
sampling is uniform across objectives. The flip treatments,
however, show a much different sampling. Here, turning
objectives arise far more often as compared to wall crossing
objectives. This disparity potentially indicates a difference
in difficulty between the two tasks, as well as a selection ef-
fectiveness difference as more turning objectives have to be
considered during selection.

Discussion
In this study, we examine three objective sampling strategies
for two quadrupedal locomotion tasks. It appears that suc-
cess in wall crossing does translate mildly to the turning task
as naive 1t demonstrates upward drift in performance over
time. Both tasks require locomotion and it seems likely that
for two or more locomotion tasks there is going to be some
behavioral overlap. Here we hypothesize that the overlap
manifests as the low selective efficacy in the middle turning
objectives as the target is placed at nearly the same location
as-in wall crossing. No matter the wall crossing objective,
there would be some pressure toward navigating to the target
as in the turning task. This overlap may also aid in the pre-
vention of catastrophic forgetting as flip50 2t does not suffer
a significant decrease in performance despite alternating pe-
riods of 50 generations where wall crossing or turning are
not used in selection.

There is not a large performance difference across two
task treatments. Furthermore, doubling the number of gener-
ations to allow for approximately the same number of selec-
tions in wall crossing does not significantly improve perfor-
mance for naive 2t. This indicates that the addition of a sec-
ond task does not implicitly require a subsequent increase in
evolutionary time. We note that the task relatedness is likely
a factor here to consider as well, and subsequent investiga-
tion is planned to introduce conflicting tasks. Still, given
that even sampling and flipping treatments require some pa-
rameterization it may be better to stay with a naive uniform
sampling strategy and not overconstrain Lexicase.

Conclusions and Future Work
Evolving robots capable of accomplishing multiple tasks is
a critical step towards generalized behavior. In this study,
we evaluate Lexicase selection’s performance on a two-task
quadrupedal locomotion problem. The different objective
sampling strategies all evolve effective behaviors across the
two tasks, with a slight loss in performance on wall cross-
ing versus individuals only evolved for wall crossing. Min-
imal performance differences arise across sampling strate-

gies suggesting that a naive uniform sampling approach is
acceptable in this domain. Choosing a naive sampling ap-
proach also has the added benefit of removing additional pa-
rameters from the search algorithm, reducing the need for
user specified constraints.

In future work, we plan to expand the number of tasks
from two up to a range of five to ten, substantially increasing
the objective space. Additional tasks will also introduce con-
flicting pressures requiring compromises in performance be-
tween objectives. We will continue to examine performance,
and characteristics of Lexicase selection in these broader
spaces. Furthermore, although not necessarily the goal of
this paper, quantifying the filtering efficacy of the objectives
suggests that an adaptive Lexicase selection could monitor
what objectives are stronger filters and up or down-weight
those objectives. Changing the occurrence rate of those ob-
jectives would alter the explore versus exploit dynamics of
the algorithm potentially increasing performance or leading
to increased diversity.
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