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Abstract

Lexicase selection is an effective many-objective evolution-
ary algorithm across many problem domains. Lexicase can
be computationally expensive, especially in areas like evo-
lutionary robotics where individual objectives might require
their own physics simulation. Improving the efficiency of
Lexicase selection can reduce the total number of evalua-
tions thereby lowering computational overhead. Here, we
introduce a fitness agnostic adaptive objective sampling al-
gorithm using the filtering efficacy of objectives to adjust
their frequency of occurrence as a selector. In a set of binary
genome maximization tasks modeled to emulate evolutionary
robotics situations, we show that performance can be main-
tained while computational efficiency increases as compared
to ϵ-Lexicase.

Introduction
Evolutionary many-objective optimization approaches apply
selection operators across a number of objectives to evolve
robust solutions. Over many generations, individuals evolve
within a population excelling on one or more objectives.
As individuals gain proficiency within the population, se-
lection, recombination, and mutation further refine individ-
uals to solve challenging tasks. Lexicase selection (Spec-
tor, 2012) has evolved solutions in many-objective optimiza-
tion problems across a variety of problem domains (Hel-
muth et al., 2014; He et al., 2022). Applied to evolutionary
robotics (ER) (Floreano et al., 2008; Doncieux et al., 2015),
Lexicase can effectively leverage modal objectives (e.g. as-
sess a quadrupedal animat on distance traveled, efficiency,
leg behaviors) (Moore and Clark, 2021) or to variants of a
similar objective (e.g. wall-crossing across different wall
heights) (Moore and Stanton, 2017). Lexicase can be com-
pute intensive, especially in the ER domain, where multiple
physics simulations might be required per individual to com-
pute fitnesses across objectives.

Despite computational overhead, Lexicase selection has
been shown to be effective in evolving generalized behav-
ior. First, effective locomotion for variants of a single task,
wall-crossing (Moore and Stanton, 2019, 2020) with 100
unique wall heights, and then to evolving two separate be-
haviors, wall-crossing and turn-and-seek (Moore and Stan-
ton, 2021). For the wall crossing and turn-and-seek animats,

each task comprises 100 unique environments resulting in
a 200 objective optimization problem. Evolved individuals
exhibit generalization across the unique configurations of a
single task, and multi-modal behavior solving wall cross-
ing and turn-and-seek with a single artificial neural network
controller. Although the two behaviors appear distinct, loco-
motion and navigation to a target are required for both tasks.
Within a task, each unique environmental configuration fol-
lows the general goals of the larger meta task (e.g. wall
crossing or turn-and-seek). For wall-crossing, wall heights
increase incrementally, while in turn-and-seek the objectives
progressively move the navigation target from an individ-
ual’s left, to front, and finally to the right. The relation-
ships between individual objectives likely mean that there
are general behaviors across objectives. Finding and ex-
ploiting the relationships between objectives might lead to a
more efficient search of the problem space, freeing compute
resources to add in additional tasks or lengthening the evolu-
tionary time allotted to a run. For ER tasks, algorithmic effi-
ciency gains can significantly reduce the computational run
time as physics simulations are often the most time intensive
portion of the process. This is especially the case where each
objective requires its own physics simulation to generate a
fitness value as-in (Moore and Stanton, 2018, 2019, 2020;
Stanton and Moore, 2022) where the 100 or 200 objective
problems make it computationally infeasible to evaluate ev-
ery individual in the population across all objectives every
generation.

In this study, we propose a fitness agnostic mechanism to
leverage hidden relationships between objectives augment-
ing the Lexicase selection operator. Our adaptive sampling
strategy focuses on gathering information about objectives
by recording data from the selection step complementing
weighted shuffling originally introduced in Troise and Hel-
muth (2018) where the entire population’s performance is
used to inform objective weighting. Specifically, adaptive
sampling maintains a record of how effective individual ob-
jectives are at separating individuals during comparison in
selection. Objectives that filter out more individuals have
their chance of being used as a selector increased, while



those that are poor filters are decreased. As information is
gathered about selection events, the algorithm changes the
probability of how frequently an objective is used in the se-
lection process. We hypothesize that this adaptive approach
will find objectives that are good selectors while using poor
selectors infrequently. This would lead to reductions in the
number of evaluations used during a run which subsequently
reduces the computational overhead of simulating objectives
in domains like ER.

Three adaptive sampling strategies are compared to ϵ-
Lexicase on a binary genome problem emulating the rela-
tionships that arise between objectives in the ER experiment
in (Moore and Stanton, 2018). Results show that adaptive
sampling based on filtering efficacy during selection can
increase performance while also decreasing the number of
objectives needed for comparison. Adaptive strategies do
not always exceed fitness or efficiency of ϵ-Lexicase selec-
tion but performance only degrades to be comparable to ϵ-
Lexicase. Finally, we show that the most effective adaptive
sampling strategy can be tuned to improve computational ef-
ficiency while maintaining overall fitness performance.

Background and Related Work
Lexicase selection is a many-objective selection operator
that has found success in a variety of domains from genetic
programming (Spector, 2012), geosciences (He et al., 2022)
and ER (Moore and Stanton, 2017). Lexicase is effective
at maintaining population diversity and specialists within a
population which contribute to its success in many-objective
search problems (Helmuth et al., 2016; Dolson and Ofria,
2018). ϵ-Lexicase (La Cava et al., 2016) is especially impor-
tant in the ER domain as small performance differences on
metrics such as distance traveled, or locomotive efficiency,
don’t produce meaningful differences in the observed behav-
iors of animats. Adding a “close enough” factor allows two
individuals within ϵ∗max fitness in the pool of candidates
to move on to be compared on other objectives.

For domains such as ER, Lexicase selection can be com-
pute intensive as physics simulations are needed for eval-
uating objectives. If every objective needs to be evaluated
at each generation, and objectives require individual sim-
ulations, computational overhead grows rapidly with any
added objectives. A number of techniques have been ex-
plored addressing efficiency in Lexicase including down-
sampling (Moore and Stanton, 2017, 2018, 2019; Hernan-
dez et al., 2019), where the number of objectives consid-
ered during selection is limited with ties resolved through
a random selection, or cohort Lexicase selection (Hernan-
dez et al., 2019), which is similar to an island model genetic
algorithm. Both approaches have yielded computational ef-
ficiencies allowing for longer evolutionary searches given
the same compute budget (Ferguson et al., 2020). These
techniques rely on random sampling of the objectives and
evolutionary timelines to evolve effective individuals.

It is possible that information about each objective’s ef-
fectiveness as a selector could be leveraged to further en-
hance the computational efficiency of Lexicase selection.
Troise and Helmuth (2018) proposed using prior knowledge
about the difficulty of objectives to influence the ordering
of objectives during Lexicase selection. Although perfor-
mance of the weighted shuffling did not exceed that of tradi-
tional Lexicase with uniform shuffling, it has the potential to
reduce the number of individual evaluations needed during
an evolutionary run as shown in Ding et al. (2022). There,
weighted shuffling was applied with the weights of each ob-
jective modified based on the success of subsets of the pop-
ulation on an objective. In this work, we further examine
weighted shuffling by exploring a fitness agnostic measure
adjusting the weights of objectives during selection without
requiring additional evaluations of the population.

Fitness Agnostic Adaptive Sampling Lexicase
Selection

Fitness Agnostic Adaptive Sampling (FAAS) ϵ-Lexicase Se-
lection develops a list of weights to apply to objectives while
the evolutionary process is ongoing. Under downsampled ϵ-
Lexicase selection, a set of objectives are drawn randomly
and used to evaluate a set of individuals during an individual
selection event. While individuals undergo selection, the set
of individuals are compared on their performance in the first
objective. Only those that are within ϵ∗max fitness of the
top performing individual advance to the next objective un-
der consideration. If at any point there only remains one in-
dividual, that individual is returned as the selected individual
and the evaluation process stops. Together with downsam-
pling, FAAS ϵ-Lexicase selection can be effective and com-
putationally tractable in the ER domain. The information to
facilitate adaptive sampling can be generated alongside the
normal selection process by evaluating an objective’s ability
to separate individuals from the selection pool. An objec-
tive’s “filtering effectiveness” can be determined by calcu-
lating the ratio of how many individuals were filtered out di-
vided by how many individuals were under consideration by
the objective. A list of filtering ratios, each associated with
an objective, can be maintained and updated over the course
of a run and used to influence which objectives appear in
selection. The following subsections further describe FAAS
and variations considered in this study.

Objective Selection
A key aspect of making Lexicase selection computationally
efficient is to simulate only what is needed to evaluate indi-
viduals during selection. Downsampling helps reduce that
cost by limiting the number of objectives considered during
an individual selection event but it remains a stochastic sam-
pling from the entire objective space. Typically, objectives
are selected randomly with a uniform distribution from the
pool of objectives. Sampling objectives for the evaluation



phase with FAAS takes into account the filtering effective-
ness of an objective. Initially, all objectives have an equal
probability of being used for selection. The probabilities of
objectives change as information is gained about the popu-
lation and objectives. Each objective is assigned a chance of
selection relative to its filtering effectiveness ratio as a per-
centage of the total ratios across all objectives. Better filters
have a higher proportional representation in a roulette wheel
scheme while those that have been poor filters are allotted
a smaller portion. By not fully eliminating poor filtering
objectives, they have a chance to increase their probability
of being used for selection over time. This could occur as
an objective may transition from a poor filter to an effective
filter as populations evolve and higher fitness individuals in-
tegrate new behaviors. Initially challenging environments
might have a low filtering power early in evolution as the
population may not yet have evolved the behaviors required
to be successful. As a population gains proficiency, objec-
tives may become better filters while initially good filters
might be less effective due to the population broadly having
competency for that specific objective.

Objective Ratio Assignment Strategies
The weight of an objective is calculated as an offset from a
baseline. Weights are initialized to a fixed value for equal
initial consideration of all objectives. They are adjusted
based on feedback gathered from the selection of individ-
uals during Lexicase. The number of individuals filtered by
and the number of individuals considered by a given objec-
tive provide a filtering effectiveness value. How this value is
used to adjust ratios dictates the behavior of adaptive sam-
pling. We next describe three strategies to integrate new in-
formation about filtering effectiveness.

FAAS ϵ-Lexicase Base FAAS ϵ-Lexicase, herein referred
to as Adaptive, maintains a running tally of how many indi-
viduals enter a selection event and how many individuals are
filtered. When an objective is used for selection, its ratio is
updated based on the following formula:

ratioi = ratioi + λ((num fili/num ini)− ratioi) (1)

where ratioi is the ratio for objective i, num fili is the
number of individuals filtered, num ini is the total number
of individuals evaluated by the objective, and λ is a constant
update rate (1.0 in this study). One possible side effect of
this method is that a given objective’s ratio could fall to zero,
or near zero, eliminating an objective from being considered.
Accordingly, Adaptive enforces a minimum ratio of 0.05.

Sliding Window FAAS ϵ-Lexicase Ratios based on the
entire historical record for an objective might suppress an
objective’s chance of being selected in later generations
where it might actually be a more effective filter. To address

this possibility, we introduce a sliding window wherein the
last 800 objective evaluations are used to determine the ra-
tios of the objectives. In Slide, an objective’s ratio is calcu-
lated during a run from the data points in the window tied to
that objective. If an objective has not been used within the
sliding window, its ratio is set to the mean filtering ratio of
all objectives. As evolution progresses, older data that could
influence objective ratios is discarded, while newer informa-
tion informs the current state of the evolutionary search. Ad-
justing the size of the sliding window influences how much
new information steers the selection of objectives for evalu-
ation.

Restorative FAAS ϵ-Lexicase An alternative approach to
a sliding window is to implement a restorative adjustment
for low performing objectives. In Restore, objective ratios
are adjusted as in Adaptive FAAS ϵ-Lexicase but no mini-
mum ratio is enforced. Instead, when objectives are sam-
pled for a new Lexicase selection, objectives that are less
than the mean ratio across objectives are adjusted upwards
at 10% of their difference from the current ratio to the mean
of all objectives. Over time, low performing objective ra-
tios will increase, enhancing their chance of getting selected
again.

Binary Genome Tests
The three FAAS ϵ-Lexicase variants are compared to ϵ-
Lexicase selection on a series of four binary genome maxi-
mization tests. Genomes comprise 500 bits, with objectives
being composed of subsets of the total genome space. Each
objective attempts to maximize the sum of its constituent
bits. For reporting purposes, we report a metric, All F it,
which is the sum of the bits across all loci although no ob-
jective is evolved to maximize the entire genome specifi-
cally in three of the four tests. Figure 1 shows the config-
uration of the four tests conducted in this study. We mod-
ified the one-max problem to mimic the relationships be-
tween objectives that we hypothesize exist in ER tasks like
wall-cross or turn-and-seek. Our goal is to evaluate the per-
formance of FAAS ϵ-Lexicase on a domain where the rela-
tionships between objectives are explicitly defined and intu-
itive. If FAAS ϵ-Lexicase is effective, we hypothesize that
the computational cost will be lower than ϵ-Lexicase. The
following paragraphs describe the 4 tests that we conduct.

Test 1: Non-Overlapping Objectives T1-No Overlap is a
500 bit binary problem with 50 objectives. Each objective
spans 10 genes. No genes are shared between objectives.
This test establishes a baseline of performance between ϵ-
Lexicase and FAAS ϵ-Lexicase. In this test, we hypothe-
size that FAAS ϵ-Lexicase will not significantly favor any
individual objective as there are no shared genetic regions
between objectives.



Figure 1: The four tests used in this study. T1-No Overlap has no overlapping objectives. T2-Overlap has overlapping objec-
tives but ends are not overlapped. T3-Wraparound has all objectives containing equal overlap. T4-Progressive progressively
increases the number of genes in an objective with higher objectives fully encompassing the genes from lower objectives.

Test 2: Overlapping Objectives without Wraparound
T2-Overlap comprises 241 20 gene objectives. Objective
0 starts at gene 0 ending at gene 19. Objective 1 starts at
gene 2 ending at gene 21. Subsequent objectives follow this
pattern starting at every even numbered gene up to gene 480
creating significant gene overlap among adjacent objectives.
All of an objective’s genes are covered by other objectives
except for portions of the first and last objective. We hypoth-
esize that the overlap will lead to FAAS ϵ-Lexicase exhibit-
ing periodic spikes in objective usage relative to adjacent
objectives which will be less frequently sampled given the
shared evolutionary pressures.

Test 3: Overlapping Objectives with Wraparound T3-
Wraparound follows the structure of T2-Overlap, but with
wraparound objectives creating toroidal coverage of the
genome space. This wraparound means that the first and
last objectives do not have less shared genetic material than
the other objectives. Subsequently, we still expect to see the
periodic spikes, but without higher usage of the first and last
objectives as might be expected in test two.

Test 4: Progressive Objectives T4-Progressive focuses
on progressive overlap of objectives. The first objective cov-
ers genes 0 to 19 with each subsequent objective adding
two more genes (e.g. Objective 0: 0-19, Objective 1: 0-
21, Objective 2: 0-23 ...). A total of 241 objectives arise

with this scheme. As the objectives increase, they cover a
more substantial portion of the genome space. Lower num-
bered genes will also be covered by every objective while the
highest genes will only be covered by a few objectives. This
situation is intended to mimic tasks where there may be a
common “simple” behavior while more advanced behaviors
encompass and expand on those behaviors.

Evolutionary Algorithm and Parameters
For each test, we conduct 20 replicate runs initialized
with a unique random seed. Populations of 100 individ-
uals are evolved for 1,000 generations. Mutation rate is
1/genome length and crossover probability is 50%. A se-
lection subset size of 4 is used during Lexicase selection
with an ϵ = 0.9. That is, individuals within 10% of the best
individual in a selection subset on the objective currently be-
ing evaluated will be considered tied and the selection will
proceed to the next objective. To maintain computational ef-
ficiency, we employ downsampling with a maximum of 10
objectives per selection evaluated. If a subset of the individ-
uals are considered tied on all 10 objectives, a random indi-
vidual is selected and a tiebreak is recorded. Each objective
is a maximization task summing the number of 1’s across
the gene range. Population size and number of generations
along with the evolutionary parameters have been chosen to
follow those in (Moore and Stanton, 2017) as the FAAS ϵ-
Lexicase technique is ultimately intended to be applied in



ER. As such, using parameters common in that domain more
closely mimics conditions the algorithm will experience in
computationally costly tasks.

Results
Fitness Performance Across Tests Figure 2 plots the
count of 1’s in the 500 gene genome (All Fit) of the best
individual per replicate across treatments for every test in
this study. Since there is varying gene overlap depending
on the test, All Fit provides a standardized score to com-
pare results across tests. High fitnesses evolve in the first
three tests while T4-Progressive fails to evolve high fitness.
T1-No Overlap provides a baseline for the FAAS algorithms
as each objective is independent of the others. There is no
significant difference in All Fit in T1-No Overlap between
treatments using a Wilcoxon test with Bonferroni Correc-
tion. This test is used to conduct all following statistical
tests. In T2-Overlap, Slide significantly outperforms the
other three treatments (p < 0.001). Fitnesses increase for
all FAAS treatments with the addition of wraparound objec-
tives in T3-Wraparound, but the only significant difference
in performance is between Slide and ϵ-Lexicase. Unlike
prior experiments, fitnesses in T4-Progressive are lower in
general with a mean around 340 out of a possible 500. This
suggests that the task itself might be considerably harder,
or the dynamics of the task do not support an adaptive ap-
proach.

Computational Cost Across Tests Figure 3 plots how
many objectives cumulatively were used in selection events
across replicates. Slide has significantly fewer evaluations
for T1-No Overlap and T2-Overlap compared to the other
three treatments. Slide only has significantly fewer evalua-
tions than ϵ-Lexicase in T3-Wraparound with no significant
difference from the other two FAAS treatments. No signifi-
cant differences arise between treatments in T4-Progressive.

Figure 4 plots the cumulative count of objectives evalu-
ated during selection for T2-Overlap across treatments. The
behavior shown in the figure is similar for T1-No Over-
lap and T3-Wraparound, where significant differences arise
between Slide and ϵ-Lexicase. Slide requires slightly fewer
objective evaluations at every generation resulting in a com-
putational savings by the end of a run of 14% in T1-No
Overlap and 4% in T2-Overlap and T3-Wraparound. For
a typical ER run simulating 10 seconds of locomotion as
in (Moore and Stanton, 2018), this can save 1 hour of com-
pute time per replicate with up to 80 hours of savings across
a 4 treatment, 20 replicate experiment.

Surprisingly, Slide has significantly fewer evaluations
in T1-No Overlap where no shared genetic regions exist be-
tween objectives. Figure 5 plots the number of objectives
used during evaluation per generation across the four treat-
ments. Throughout the course of the run, Slide consistently

maintains a lower number of objective evaluations. We hy-
pothesize that this could be an artifact of Slide maintaining
the filtering effectiveness measure for the last 800 objective
evaluations only. Assuming a population size of 100 indi-
viduals, the window could effectively look back from 1 to
10 generations depending on selection depth and frequency
of crossover. In T1-No Overlap, it may be that Slide is
downweighting objectives that aren’t good filters perhaps
due to specialization by the population. This could be
enough to push selection towards objectives where there
is more variation in the population. By exploring these
spaces, Slide doesn’t evaluate as many objectives per selec-
tion resulting in the decreased cumulative number of evalu-
ations.

Objective Usage Characteristics FAAS ϵ-Lexicase is in-
tended to exploit shared relationships between objectives to
more efficiently explore search spaces in computationally
intensive problems. Accordingly, Figures 6 and 7 plot the
genes covered by an objective on the x-axis with the fre-
quency an objective was used on the y-axis. ϵ-Lexicase has
relatively equal usage of objectives considering that objec-
tive selection is a stochastic process. Slide shows a larger
disparity in objective usage. Even with the noise in the
adaptive process, adjacent objectives in Slide often exhibit
differences in usage. Since there is significant shared ge-
netic information between adjacent objectives, one objective
with high usage would tend toward suppressing usage of its
neighbors.

Slide Further Investigation
Slide is the most effective FAAS ϵ-Lexicase approach in the
initial tests. In the first part of results, a window size of 800
was used. Next, we conduct a second set of experiments
with variations of the window size determining how long
objective information is maintained. Window sizes are 200,
400, 800, 1600, 3200, 6400, and 25600.

Figure 8 shows the number of objectives used during se-
lection for each replicate in T1-No Overlap. Fitness plots
are not shown as the window size does not significantly im-
pact fitness with scores similar to those of Slide from Fig-
ure 2 T1-No Overlap. For this configuration, there is a slow
increase in the number of objectives used for selection as the
sliding window size increases. There is a split between the
window sizes with significant differences in the number of
objectives between window sizes of 3,200 and under com-
pared to 6,400 and 25,600. As the window size increases,
more objectives are evaluated but still less than those of ϵ-
Lexicase for T1-No Overlap.

Figure 9 plots the number of objectives used during se-
lection per replicate for T2-Overlap. A similar pattern is
observed in T3-Wraparound (not shown). It appears that
there is a range of optimal window sizes in terms of the com-
pute time required for a replicate. Too small a window size



Figure 2: Cumulative count of 1’s in the best individual per replicate per treatment. Note the different y-axis for T4-
Progressive where all four treatments failed to evolve high performing individuals.

Figure 3: Number of objectives evaluated per replicate per treatment.

Figure 4: Cumulative count of how many objectives were
considered during selection over the course of a replicate run
for T2-Overlap. Slide evaluates fewer objectives over the
course of the evolutionary run resulting in a significant dif-
ference in total objectives evaluated after 1,000 generations.
Shaded regions represent the 95% confidence intervals.

may prevent the algorithm from gaining enough informa-
tion about objectives to determine a subset of objectives to
focus on. A window size of 200 means that only the last
one or two generations would be used to influence objective
weighting. Whereas, a large window size could maintain
information about objectives for more generations allowing

Figure 5: Count of how many objectives were considered
during selection over the course of a replicate run for T1-
No Overlap. Slide requires fewer evaluations over time,
even when the objectives do not have overlapping gene loci.
Shaded regions represent the 95% confidence intervals.

old information to influence the selection of objectives. If
held for too long, old information might not represent the
current best set of objectives in terms of filtering efficacy
leading to deeper use of objectives during Lexicase selec-
tion and increased computation time.



Figure 6: Objective usage count per objective in replicate
5 of ϵ-Lexicase for T2-Overlap. Rectangular region indi-
cates the genes covered on the x-axis while the location on
the y-axis is how many times the objective was used during
selection over the course of the run.

Figure 7: Objective usage count per objective in replicate
7 of Slide for T2-Overlap. Rectangular region indicates the
genes covered on the x-axis while the location on the y-axis
is how many times the objective was used during selection
over the course of the run.

Conclusion and Future Work
As in related work (Troise and Helmuth, 2018; Ding et al.,
2022), the adaptive sampling explored in this study does not
always exceed the performance of ϵ-Lexicase but computa-
tional overhead can be reduced. The three adaptive sam-
pling strategies yield differing efficiency with a sliding win-
dow being the most effective in terms of both performance
gains and number of objectives used during selection. Of the
three FASS approaches proposed, Slide’s improvements in
fitness and computational efficiency in T2-Overlap and T3-
Wraparound, and a surprising improvement in computa-
tional efficiency in T1-No Overlap merit further consider-
ation in computationally expensive domains. It also appears
that in the worst case (T4-Progressive) Slide degrades only
to have the same performance as ϵ-Lexicase. The objec-
tive configuration of T4-Progressive may not lend itself to
an adaptive approach as lower numbered genes are covered

Figure 8: Count of how many objectives were considered
during selection over the course of a replicate run for T1-No
Overlap.

Figure 9: Count of how many objectives were considered
during selection over the course of a replicate run for T2-
Overlap slide exploration.

by every objective. While we hypothesized that the adap-
tive mechanism would gradually reduce the occurrence of
lower objectives over evolutionary time, here it appears that
there may be a point at which the adaptive mechanism can-
not override the disparity between small and large objectives
as determined by number of genes. It could also be that the
small population size, in keeping with typical sizes in ER,
limit Lexicase’s ability to maintain niches in the population
specializing on this problem. With so few objectives cover-
ing the higher numbered genes the task itself might limit the
performance of any variant.

Leveraging the filtering efficacy of objectives provides an
adaptive weighting approach that doesn’t require additional
evaluations and should be broadly applicable to any prob-
lem implementing Lexicase selection. A final potential ben-
efit of the algorithm is that when it cannot leverage infor-
mation about objectives, performance returns to be com-
parable to ϵ-Lexicase. Here, the behavior of Slide in T2-
Overlap and T3-Wraparound support our initial hypothe-



sis that an adaptive approach can leverage relationships be-
tween objectives. While the test problems posed in this
study are not computationally intensive, they mimic the re-
lationships we suspect exist in ER problems like wall-cross
and turn-and-seek where each objective requires its own
physics simulation. There, the savings in objectives eval-
uated could allow for more generations, larger population
sizes, or reduce the power requirements of a run enhancing
the sustainability of the approach.

In this work, we provide an initial exploration of using
filtering efficacy as an adaptive mechanism weighting ob-
jectives without additional overhead on a binary genome
problem. Future work will examine applying FASS to more
complex problem domains in ER. We plan to examine if
the adaptive mechanism can effectively leverage relation-
ships in more complex problems while also revealing un-
known relationships between objectives that might inform
problem design/dynamics. We are also interested in the im-
pact that FAAS ϵ-Lexicase approaches might have on diver-
sity and exploration, two critical factors in ER.
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